If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=4050
We move all terms to the left:
x^2-(4050)=0
a = 1; b = 0; c = -4050;
Δ = b2-4ac
Δ = 02-4·1·(-4050)
Δ = 16200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16200}=\sqrt{8100*2}=\sqrt{8100}*\sqrt{2}=90\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90\sqrt{2}}{2*1}=\frac{0-90\sqrt{2}}{2} =-\frac{90\sqrt{2}}{2} =-45\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90\sqrt{2}}{2*1}=\frac{0+90\sqrt{2}}{2} =\frac{90\sqrt{2}}{2} =45\sqrt{2} $
| 7n-2=343 | | 7+10x(5x5x5=) | | 4x(2x-1)=16 | | 10x=(3+x)*8 | | 21*2x=(x+5)*27 | | 5(-m+1)=2(m-1)+28 | | 12*4x=(x+5)*8 | | (x-5)²=98 | | 3x+1=8x-5 | | 4x+1+9=17 | | |4x+1|+9=17 | | 5/4x-1=5/4x+1 | | 5/4x-1=5/4x=1 | | c.)N+4.3=5.1 | | (4x+36)=(3x-3 | | 6x–3x+4–2x=6x+5 | | x+(.35x)=50,000 | | 5(5+t)-3(t-6)=0 | | 8a+12=-3a+31-11a | | -6x²+5=1.2x | | 2/5x-1/3=2/3x+1/1 | | 3(x+4)+2(5x+2)=0 | | 60h-1=3(1+12h) | | 60a-1=3(+a12a)* | | 6-1x/3=-1 | | X=2+10x2-5+3 | | (3y-2)(-y)=0 | | 2(x+9)=(4x+1) | | 4-3(1+2x)=0 | | 2(3u-49)=-u+14 | | -2(5w-2)=-3(4w-7) | | -3(4m-2)+5(1+3m)=0 |